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SIENDER, AXISYMMETRIC POWER BODIES
HAVING MINIMUM ZERO-LIFT DRAG IN HYPERSONIC FLOW

by
ARTHUR H. LUSTY, JR,¢"’
SUMMARY

In this paper, the problem of finding the slender power body of revo=-
lution having minimum zero-lift drag in hypersonic flow is msolved by di-
rect methods. A constant friction coefficient is assumed, and both the
Newtonian impact law and the Newton-Busemann law are employed to provide
the distribution of pressure coefficients over the body. A generalized
optimum condition is found in determinantal form under the assumption that
any two arbitrary functions of the diameter, the length, the wetted area,
the volume, and the exponent of the power body are preacribed, After these
constraints are specified explicitly, particular problems are solved; it is
found that, in all cases where the wetted area is not prescribed, the shape
of the optimum power body is strongly dependent on the friction coefficient.
For the Newtonian impact case, the power body solutions of this report are
coapared with the variationmal solutions of Refs. 1 and 2 in the range of
values of the friction parameter for which the variational solution includes
a single subarc only., It ie found that the drag of the optimum power body
approximates closely that of the variational solution body only in the cases

where the diameter is one of the prescribed quantities,

(.)Staff Associate, Astrodynamics and Flight Mechanics Group, Boeing
Scientific Research Laboratories,



1. INTRODUCTION

The problem of minimizing the zero-lift drag of a slender body of revo-
lution in hypersonic flow has recently received considerable attention for
the case where the pressure coefficient is assumed to satisfy the Newtonian
impact law and the friction coefficient is constant (Refs. 1 and 3), While
variational techniques have been employed in these references, it is the
purpose of this paper to employ the ordinary theory of maxima and minima in
order to restudy these problems as well as to solve the new problems arising
from the use of the Newton-Busemann pressure coefficient law., This approach
by direct methods is possible if the functiom describing the longitudinal
contour of the body is prescribed except for some undetermined constants,
In this connection, the class of power bodies is investigated, and the total
drag (the sum of the pressure drag and the friction drag) is minimized under
several constraints. A key assumption for the Newton-Busemann case is that
no flow separation occurs, that is, free layers are ruled out; this is pre~
cisely the case with the power bodies as long as the exponent of the power
law is larger than a certain minimum value.
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2. QGENERALIZED PRESSURE COEFFICIENT IAW

For a slender body of revolution, the Newtonian pressure coefficient

is given by (Refs. 1 through &)

Cp = 2y Q)

where x denotes a streamwise coordinate, y a normal coordinate, and the
dot sign a derivative with respect to x (Fig. 1) The Newton-Busemann pres-

sure coefficient for this body is written as (Refs. 4 and 5)
o2 .
Co=2y + ¥y

Either of the above relations is a particular case of the following general-

ized pressure coefficient law;
C_ = z(iz +§ ﬁ) (3
P

where the parameter ¢ has the values ¢ » O for the impact case and ¢ = 1 for

the Newton-Busemann case.



3. THE DRAG, THE WETTED ARFA, AND THE VOLRME g
Using the generalirzed pressure coefficient law of the previous section

and introducing a constant friction coefficient cf, one obtains the follow-

ing expression for the drag per unit dynamic pressure of the forebody of a

slender body of revolution:

)
%.uﬂj; [ﬁ}+§y2§§’]dx¢c‘8 (&)

where £ is the length of the body and S is its wetted area, Under the

aslender body approximation, the expresaion for the wetted area is written as

4
s-anydx (s)
0

while the corresponding volume is given by

£
V-wfyzdx (6)
(]

If one restricts the analysis to pover bodies of the fora
n
y-$% (%) Q)]

vhere d is the diameter, the previous expressions can be integrated to yield

L 3 3 2
D m |22° + ¢(n” = 1)
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5
8 =w ndt/(n + 1) (9)
V = md4/4(2n + 1) (10)

provided n > 1/2, This limitation is necessary in both the Newtonian flow
model and the Newton-Busemann flow model in order to insure that the drag
contribution of the nose is finite, Incidentally, this inequality auto-
matically insures that the pressure coefficient of the Newton-Busemann case

is positive everywhere along the contour,



4, MINIMUM DRAG PROBLEM

The problem considered here is that of minimizing the right-hand side
of Eq. (8) with respect to all combinations of the quantities 4, £, §, V, n

which satisfy the fundamental constraints having the form

tl:S(n+1)-mu-o'

(11)
‘5 = bv(2n + 1) -ndzg.o
as well as two additional constraints having the form
+ = vj(d. Ly Sy Vo n) = Const = O
(12)

"y - v,’(d. £y 8y Vo n) = Const = O

Since the number of variables is five and the number of constraints is four,
the problem admits one degree of freedom, Hence, the optimizing condition
can be reduced to the vanishing of only one Jacobian determinant, that of
the function to be extremized and the constraining functions with respect
to all the variables of the problem, This optimizing condition is given by
(Refs, 6 and 7)

D/q '1 '2 ’3 ’l’

J =0 3)
d £ 8§ V »n

and its explicit form is



-‘m

The five equations (11), (12), and (14) completely determine the set of
variables d, £, S, V, n which minimize Lhe total drag per unit dynamie

pressure,
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5. PARTICULAR CASES

In this section, several sets of additional constraints having engineer-
ing interest are specified, and the corresponding optimum shapes and mini-
mm values of the drag are caloulated, The representation of the results
is greatly facilitated if several nondimensional parameters are introduced,
These parameters are the friction parameter Koo Itho thicimess parameter
KT. and the drag parameter KD. The definitions employed for these param-
eters depend on the particular problem and are presented in the pertinent

sections.

Sele Given Diameter and Length
If the diameter and the length are prescribed, the additional constraints

are written as

45 = d - Const = 0
Q15)
¥, = 4 - Conat = 0
80 that the generalized optimum condition (14) becomes
F (%) 3 <%) C¢ 0 & (%)!
-1l -mnd n+l 0 8
-2mi4  -m™° O Mkamaed) 8y |=o0 (26)
1 o o 0 0
0 1l 0 o 0
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The expansion of this determinant ylelds the relationship

CgS D
—~1-3(2) a?)
where
b [o 3 2 3 2
_a_(g)_nd[Bn - 602 + g(bn’ - Sa +2n)] "
2 \a) 716 (2n - 1) 8

After Eqs. (9), (17), and (18) are combined, and after the friction pa-

rameter is defined as
Ko = - 9)
the optimum condition becomes (Fig. 2)

2

Furthermore, after Eqs. (8), (9), (19), and (20) are combined and after the

drag parameter is defined aa(.)

(‘)l'his drag parameter is equal to the drag coefficient C_. referred to
the frontal area divided by the square of the thickness ratio 't = 4/,
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2
D by
B « (21)
Lk
the following functional relationship is obtained (Fig, 3):
K = K'D(Kf' ®) (22)

5.2 QGiven Diameter and Wetted Area

For the problem where the diameter and the wetted area are prescribed,

the additional constraints become
+ = d - Const = O

(23)
" = 8 « Const = 0

These conditions in conjunction with the generalized optimum condition (14)

Jield the optimum condition for this particular problem

a2 (D D
Sﬁ(a)#fﬂ%(;)"o (24)

After this expression is combined with Eqs. (8) and (9), the following ex

pression is obtained for the exponent of the optimum power body:

6a(n - 1) + g(50° = 5n + 2) = 0 (25)




oty

Since the friction coefficient does not appear in this expression, one con-
cludes that friction has no effect on the shape which ylelds the minimum
drag for given diameter and wetted area. For the impact law, the expcnent
of the optimum power body is n = 1; for the Newton-Busemann law, the optimum
exponent is n = 0,761, For the impact law, the minimum drag per unit ay-

namic pressure and the associated thickness ratio are given by

6 2
D a d
:" 0.969 ? +CS, T=157 5 (26)

For the Newton-Busemann pressure law, the analogous results are

9..0889d6+c -1'78‘0‘lz (27)
q . 81 ‘s' T . §_

5¢3¢ Given Diameter and Volume

When the diameter and the volume are prescribed, the subsidiary condi-

tions are written as

#5 = d = Const = 0
(28)

¥, =V - Const = 0

and the general optimum condition reduces to

e 2 (2)rme]-mfos-arn ()]0 e



The length and wetted area are not prescribed for this probleam so they
must be determined from the fundamental constraints, which lead to

z-ﬁz(?-n*l). safmsl (30)
After the friction parameter is defined as
v3
K‘ - Ct '43 (31)

and considerable manipulations are performed, the optimum condition can bde

expressed as follows (Fig. 4):

nj n(n+l)2 2
K, = (3 - 2n) - p(6n” = 5n + 2) (32)
LI (2n+1)(2n-172[ “ ]

If the drag parameter is defined as
p /4 vV
=3 (-,;) s (33)

a functional relationship of the form (22) can be shown to hold and is

plotted in Fig. 5. Finally, if the thickness parameter is defined as

K = 1’% (34)

pe et e gl panl el e D O o el
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the volume constraint and the optimum condition lead to the functiomal

relationship (Fig. 6)

K, =K (Kpo )

Selts Given Diameter and Exponent
For this case, the auxiliary constraints are written as

ngd-Conat-O
Y, =n - Const = 0

and, in conjunction with the generalized optimum condition, lead to the

following reslationship:

(n#l)-&-<%)+ndcf-0

After the thickness parameter is defined as

ke = o173
4

Eq. (37) can be shown to admit the solution

2 -1 /3
K, = ’-[ T 3.2 ]
T (n + 1)[2n° + @(n” = n"))

(35)

(36)

G?7)

(38)

39)
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which is plotted in Fig. 7. Incidentally, for the particular case of a

cone, the optimum thickness ratio becomes
T = [Zcf]l/} (‘00)

for both the impact and Newton-Busemann cases., If the drag parameter is
defined as

D__ &4
- = (41)
=2z

and if the optimum condition (39) is combined with Eqs. (8) and (9), the

minimum drag can be expressed in the following dimensionless form (Fig. 8):

1/3
2!13 + dll} - n%)_] (‘.2)

=

@+ 1)° (2n - 1)
For these optimum bodies, the friction drag is two-thirds of the total drag,
Furthermore, the drag parameter-exponent relationship exhibits a minimum for
n = 1 in the impact case and n = 0,761 in the Newton-Busemann case (Fig. 8).
These special values are those which would be obtained if the comnstraint on

the exponent were removed and the minimal problem problem solved for givenm
diameter only,
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5.5¢ Given Length and Wetted Area
For the minimum drag problem with givem length and wetted area, the

additional constraints are written as follows:
t} = f -« Conat = O

(43)
¥, =S - Const = 0

If the constraints and the generalized optimum condition are combined, the

exponent of the optimum power body is given by the followimg expression:
2 3 2
6n(ln” = n=1) + 9(l2n° =13n +n+2) =20 (4h)

and leads to n = 0,640 for the impact law and to n = 0,606 for the Newton-
Busemann law, For the impact law, the minimm drag per unit dynamic pressure

and the associated thickness ratio are given by

4
% = 0,0273 _S_E + crs e T =0,522 fz (k5)
2

For the Newton-Busemann law, the analogous results are written as

D s* s
E = 0.0190 T + C{S ’ T = 00511 'z (“6)
y ] £

As in the case of given diameter and wetted area, the optimum shapes are
the same as those found for the case where only the pressure drag is mini.

nized (Refs., 2 and 5).
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5.6, Given length and Volume

For the case where the length and the volume are specified, the auxiliary

constraints are written as

'3 @ f ~Const =0
47)
" V = Const = 0
and the generalized optimum condition can be expanded to give
D A(D
cf[hm e mdt8)+ (n+ 1)[11“ -% (;) + by a(a)] =0 48)

If the fundamental constraints are used to eliminate the diameter and the

wotted area and if the friction parameter is defined as

9/2

Ky = C, 3372 (49)

the following relationship is obtained (Fig. 9):

2 3/2
K, - 22D Cos VP (o006 - 6n - 3) + o(260” - 185° + 30 + 2] (50)
£ 2/ “(2n - 1)

After the drag parameter and the thickness parameter are defined as

" /2
Skt X '%'*f,i?z (51)
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they can be shown to obey functional relationships of the form (22) and (35),

respectively (Figs. 10 and 11).

5.7« Given Volume and Wetted Area

Yor this case, the auxiliary constraints are written as

*BEV-Conut-O

(52)
'h =S - Const = 0

and after they are combined with the generalized optimum conditiomn, one

obtains the following relationship:

x (%) [dzs - 8dv] + % (%) [azv - aus] -% (%) [mia.e] .0 (53)

If the fundamental constraints are used to eliminate the diameter and the
length from this expression, the expoment of the optimum power body cam be

obtained from-the relation
2 3 2
6n(6n” - 3n ~ 1) + ¢(22n” = 230 + 50 + 2) = O (54)

For the particular case of the impact law, Eq. (54) yields n = 0,729; for
the Newton-Busemann law, the optimum exponent is n = 0.652, For the impact
law, the minimum drag per unit dynamic pressure and the assoclated thickness

ratio are given by
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v2

6
D v
= = 37080 =w + C v = 58,76 (55)
3 A ol =

Tor the Newton-Bussmann law, the analogous values are

¢ ¢

D v '
== 28610 = + C v = 59,18 (56)
q '88 £ ;!

Here again, the optimum exponent is independent of the friction coefficient
since the wetted area is prescribed; thus, the optimum shapes are the same

as those found when minimizing the pressure drag only (Refs. 2 and 5).

5.8, Given Volume and Exponent
For the problem in which the volume and the expoment of the power body

are givem, the additional constraints are written as

¥ = V - Const = 0
(57)
',. =n - Const =0
and the generalized optimum condition becomes
D). 2 (2). -
a(n + 1) -%(q) 24 + 1) & (q) ™LC, = O (58)
After the thickness parameter is defined as
T
K = ;-173 (59)

f
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and after simple manipulations are performed, Eq. (58) yields the relation-
ship (rig. 12)

1/3
. 2(2n = 1) ‘ 60
Kr [(n +1)[2n" + Q(n3 - nz)]] oy

For a cone, this relationship becomes

c, V3
. [r] (61)

for both the impact case and the Newton-Busemann case, If the drag per umit
dynamic pressure is combined with the expression for the optimum thickness
and if the drag parameter is defined as

D
R Il 7 ¥, (62)

the following relationship is obtained (Fig. 13):

2+ 1 2(a - 1) (63)

1/3 9
K - g (g) (2n + lﬁl) [(n + 1)[?.:3 + Q(l} - na)]]v
For these optimum bodies, the friction drag is eight.ninths of the total
drag, Furthermore, the drag parameter-exponent relationship exhibits a mini-
awm for n = 0,729 in the impact case and n = 0,652 in the Newton-Busemanmn

case (Fig. 13). These special values are those which would be obtained if
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the constraint on the exponent of the power lawv were removed and the mini-

mal problem solved for given volume only,.

.l = e
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6. COMPARISON OF POWER-LAW SOLUTIONS AND VARIATIONAL SOLUTIONS

Now that the optimum power bodies have been determined, it is of inter-
est to compare their drag with that of the corresponding variational solu-
tiona where possible, In Ref. 1, the problem of the body of revolution having
minimwm drag in Newtonian hypersonic flow was solved for arbitrary boundary
conditions, It was found that the optimum body. ie composed of, at most,
three parts: a spike of zero thickness, a regular shape, and a cylinder
depending on the boundary conditions and the friction parameter, Since the
direct methods smployed here have been confined to power bodies whose exe
ponents are constant over the entire length (hence, spikes and cylinders
have been excluded from this analysis), one should expect the drag of the
optimum power bodies to approximate that of the variational solutions only
in the case where the variational solution is composed of a regular shape
only., For solutions including spikes and cylinders, the divergence between
the drag of the optimum power bodies and that of the variational solution
should depend on the relative length of the spike and/or the cylinder with
respect to that of the regular shape, presumably increasing as this relative
length increases.

With these ideas in mind, the drag of each optimum power body has been
compared with that of the related variational solution of Ref, 1 for the
Newtonian case and for the range of values of the friction parameter core
responding to regular shapes only., If only the diameter is given, the opti-
mum power body is identical with the variational solution. If only the
yolume is prescribed, the drag of the optimum power body is 1% greater than

that of the variational solution., If the diameter and length are given,

variational solutions consisting of regular shapes only exist in the frictiom



parameter range O < Kf < 0,5; in this range, the drag of the optimum power
body is no more than 0.l1% greater than that of the variational solutions.

If the diameter and volume are prescribed, variational solutions consisting

of a regular shape only exist in the friction parameter range O < Kf < 0.0753
in this range, the drag of the optimum power body is at most 3% greater than

that of the variational solution, If the length and volume are given, vari-

ational solutions consisting of regular shapes only exist in the friction
parameter range 0 < K, < 8.03; in this range, the drag of the optimum power
body is at most 12% greater than that of the variational solution. In the
cases where the wetted area is prescribed, only the pressure drag can be
minimized due to the assumption of a constant friction coefficient; there-
fore, the abeolute difference of the drag of an optimum power body and that
of the corresponding variational solution is independent of the frictiom
parameter, Hence, the relative difference decreases as the friction pa=
rameter increases. For inatance, if the length and wetted areas are pre-
scribed, the drag of the optimum power body is 13% greater th;n that of the
variational solution if the friction parameter is zero, However, if the
friction paraﬁpter were such that the frictiou drag was twice the pressure
drag, the total drag penalty would be only 4.,3%, In the case where the

volume and wetted area are prescribed, the drag of the optimum power body

is 14% greater than that of the variational solution if the friction pa-

rameter is zero, Finally, if the diameter and wetted area are given, the

optimum power body is identical with the variatiomal solution so that their
total drags are the same, From this comparison, it appears that the drag
of the optimum power body approximates well that of the variational solu-

tion as long as the diameter is given, If the diameter is not prescribed,
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the approximation is generally poor--one motable exception being the case

vhere only the volume is given,
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CONCLUS IONS

In this paper, the problem of finding the slender power body of revoe
lution having minimum zero-~lift drag in hypersonic flow is solved by di-
rect methods under the assumption that any two functions of the following
quantities are given: the diameter, the length, the wetted area, the volume,
and the exponent of the power law., Both the Newtonian impact law and the
Newton-Busemann law are used to determine the distribution of pressure co-
efficients, and a constant friction coefficient is assumed, After a gener-
alized optimum condition is found in determinantal form, particular problems
are studied in detail, The analysis shows that the optimum shapes do not
depend on the friction coefficient if the wetted area is given but depend
on it strongly if the wetted area is free. A comparison of the solutions
of this report and the variational solutions of Refs, 1 and 2 is performed
for the Newtonian case and for the range of values of the friction parameter
for which the variational solution consists of a single subarc only., It is
found that the drag of the power-law solutions is a good approximatiom of
the drag of the variational solutions if the diameter is given, If the di-
ameter is not given, the approximation is generally poor -~ one notable ex-

ception being the came where only the volume is prescribed.

{
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